

成都中天自动化控制技术有限公司

CT-RS 系列机器人专用 多轴伺服驱动器

使用手册

V1.5

自主可控 安全可靠 精确稳定

2023-6-30

公司简介

成都中天自动化控制技术有限公司是专业从事伺服系统和工业 数控系统研发、生产、销售的高新技术企业。公司以 EtherCAT 工业 总线为技术基础,自主研发了 CT-S300 系列高精度伺服驱动器、 CT-RS 系列多轴伺服驱动器、CT-T919 系列防爆伺服驱动器、CT-SS8000 系列高精度伺服驱动系统。

CT-S300 系列高精度伺服驱动器是基于 EtherCAT 工业总线研发 的通用型单轴伺服驱动器,采用 AC220V/380V 工作电压,专门针对高 可靠性、高精度、高响应的场景,采用 FPGA+DSP 架构,电流环带宽 可达 4KHz,能轻松实现快速响应和多轴同步控制。该产品具有体积 小、调速范围宽、高起动转矩、高功率密度、高可靠性、高稳定性、 高精度等特点,普遍适用于工业机器人、数控机床、精密制造等领域。

CT-RS 系列多轴伺服驱动器是专门为工业机器人设计的多轴一体 化产品,该产品采用 FPGA+DSP 架构,整体集成紧凑,支持单网口多 轴 EtherCAT 总线通讯,4 轴/6 轴电流环更新周期优于 1.5us/2.5us, 具有高同步性、高稳定性、高性价比、生产装配高效和维护便捷等特 点,可满足工业机器人生产企业对不同负载、臂展机型等灵活配置要 求。

CT-T919 系列防爆伺服驱动器是专门为特殊需求定制的产品,功率涵盖 7.5KW 及以下的范围,适用于易燃易爆的工作环境。

CT-SS8000 系列高精度伺服驱动系统是专门为工业机器人制造商

2 | 52

及终端客户研发的驱动控制集成型产品,由控制器、驱动器及示教屏 等组成;采用 AC220V/380V 工作电压,整体为金属独立柜体结构,具 备完整的电控柜功能;多轴合一驱动器基于 Ether CAT 工业总线,采 用 FPGA+DSP 架构,每轴电流环带宽均可达 4KHz,能轻松实现快速响 应和多轴同步控制;兼容主流控制器品牌,能为工业机器人制造企业 提供一站式、高性能、低成本的完整解决方案。

公司秉承"一起成就梦想"的经营理念,以"专注高端伺服,实 现进口替代,服务智能制造"为宗旨,遵循"自主可控、安全可靠、 精确稳定"产品三原则,严格执行 ISO 质量(GB/T19001)、环境 (GB/T24001)、职业健康(GB/T28001)管理体系,不断突破高精度伺 服驱动器和工业数控系统的技术瓶颈,致力于推进伺服系统和工业数 控系统的工程化和产业化,为工业互联网发展及中国制造 2025 目标 的实现做出应有的贡献。

目录

-,		警	告	6
二、		型号	-;识别	7
三、		选型	」清单	7
	3.1		轴功率选择范围	7
	3.2		轴功率参考输出	8
	3.3		六轴工业机器人参考负载选择	8
四、		产品	」信息	8
五、		产品	品配件	
六、		主接	5线	
	6. 1		产品尺寸(mm)	
		6.1.	1 RS3A/ RS4A	
		6.1.	2 RS5A/ RS6A	12
	6. 2		接线示意图	13
		6. 2.	1 RS3A/ RS4A	13
		6. 2.	2 RS5A/ RS6A	13
	6. 3		驱动器电源接线	14
		6. 3.	1 电源及制动电阻连接	14
	6. 4		伺服电机轴 X 连接	14
		6. 4.	1 动力线连接	14
		6. 4.	2 编码器连接器(ENC)	15
		6. 4.	3 电机抱闸连接	15
	6. 5		Ⅰ/0 接线	15
	6. 6		ETHERCAT 连接	17
	6. 7		USB 连接	17
	6. 8		ST0 安全功能连接	17
七、		快速	配置	
	7. 1		驱动器连接	19
	7. 2		虚拟电机模式	19
	7.3		轴切换	20
	7.4		电机适配	20
		7.4.	1 写入出厂电机参数	20
		7.4.	2 第三方用户电机的导入	21
	7.5		限值设定	22
		7.5.2	1 电机抱闸设定	22
	7.6		I/0 功能设定	23
	7.7		参数整定	23
	7.8		电机校零	25
	7.9		试运行(JOG)	27
	7.10)	参数保存	27
	7. 1 <i>°</i>	1	其他轴调试	
	7.12	2	多轴联动	
八、		专家	?模式	

	8.	1		控制环路参数设定	. 29
	8.	2		参数整定	29
	8.	2.	1	惯量识别	. 30
			8. 2.	2 参数整定	31
			8. 2.	.3 机械特性检测	31
			8. 2.	4 振动抑制	31
	8.	3		控制模式	. 32
			8. 3.	. 1 JOG 模式	. 32
			8. 3.	2 本地转矩正弦曲线	. 32
			8. 3.	.3 本地转矩阶跃曲线	33
			8. 3.	. 4 本地转矩指数曲线	33
			8. 3.	. 5 本地速度斜坡曲线	. 34
			8. 3.	. 6 本地速度阶跃曲线	. 34
			8. 3.	. 7 本地速度梯形曲线	. 35
			8. 3.	. 8 本地速度正弦曲线	. 35
			8. 3.	.9 本地速度脉冲曲线	. 36
			8. 3.	. 10 本地位置指数曲线	. 36
			8. 3.	. 11 本地位置斜坡曲线	. 37
			8. 3.	. 12 本地位置梯形速度曲线	. 37
			8. 3.	. 13 本地位置正弦曲线	. 38
			8. 3.	. 14 本地位置双曲线	. 38
			8. 3.	. 15 本地位置模拟曲线	. 39
			8. 3.	. 16 本地位置脉冲曲线	. 39
九、			Ethe	erCAT 工作设定	. 39
	9.	1		对象字典	. 39
			9. 1.	.1设备描述	. 39
			9. 1.	. 2 轴 N (N=0····5)	.40
			9. 1.	.3 自定义区域(N=0…5)	.41
	9.	2		RXPD0 映射	.42
			9. 2.	1轴N(N=0····5)	.42
	9.	3		TXPD0 映射	.42
			9. 3.	8.1轴N(N=0····5)	.42
	9.	4		清多圈值功能	.43
	9.	5		清驱动器错误	.43
+、			固件	牛升级功能	.43
	10	. 1		工厂模式启动	.43
	10	. 2	2	升级过程	.44
附 A	끱	刁	内容	容识别	.46
附 B	错	讶	₹, #	告警代码	.49
附 C	常	肝]终站	端命令	. 52

伺服驱动器所带电压可导致严重电击或烧伤或危害人身安全。在操作或靠近 相关产品时应格外谨慎!

本说明书适用于伺服相关的专业技术人员参考,使用前请认真阅读此说明书, 并妥善保存以便随时查阅。

注意:

- 说明书可能为通用版本,如说明书中图示与对应型号的实物有差别,可能是 示意图例亦或是产品已经更新,请以实物为准。
- 如果产品用于与生命息息相关的行业或系统上,如:医疗器械、公共服务设施、升降电梯等,请与我们联系。
- 如产品用于航空航天、核能控制、及超出产品本身使用环境要求时,请联系 我们。
- 4. 公司不对以下情况引起的损坏承担任何责任:
 - ◆ 违反操作说明
 - ◆ 自行拆解、改造伺服驱动器
 - ◆ 洪水、雷击等自然损坏
- 5. 如有遇到除本说明书以外的其他情况,请与我们联系。

二、型号识别

1	产品系列名称	CT-RS 系列
		2:2轴
		3:3 轴
2	轴数	4:4 轴
		5:5轴
		6:6轴
		A: 交流 220V
3	电源编码	B: 交流 380V
		D: 直流 48V
(4)	输出功率组合	数字为不同的输出功率组合
5	扩展型号	定制款

三、选型清单

3.1轴功率选择范围

型号	轴1	轴 2	轴 3	轴 4	轴 5	轴 6
CT-RS3A	<=2.5KW	<=2.5KW	<=1.5KW	-	-	-
CT-RS4A	<=2.5KW	<=2.5KW	<=1.5KW	<=1.5KW	-	-
	<=2.5KW	<=2.5KW	<=1KW	<=1KW	<=1KW	-
CT-RS5A	<=2.5KW	<=1.5KW	<=1.5KW	<=1.5KW	<=1KW	-
	<=1.5KW	<=1.5KW	<=1.5KW	<=1.5KW	<=1.5KW	-
	<=2.5KW	<=2.5KW	<=1.5KW	<=0.4KW	<=0.4KW	<=0.4KW
	<=2.5KW	<=2.5KW	<=1KW	<=1KW	<=0.4W	<=0.4KW
CI-K20A	<=2.5KW	<=1.5KW	<=1.5KW	<=1KW	<=1KW	<=0.4KW

7 | 52

CT-RS 机器人多轴伺服驱动器

	<=2.5KW	<=1.5KW	<=1KW	<=1KW	<=1KW	<=1KW
	<=2.5KW	<=1KW	<=1KW	<=1KW	<=1KW	<=1KW
	<=1.5KW	<=1.5KW	<=1.5KW	<=1.5KW	<=1KW	<=1KW
CT-RS6B	<=7.5KW	<=7.5KW	<=5.0KW	<=3.0KW	<=3.0KW	<=3.0KW

3.2轴功率参考输出

功率(W)	2500	1500	750	400	200
持续输出电流(A)	16	9	6	3	2

3.3六轴工业机器人参考负载选择

负载	轴1	轴 2	轴 3	轴 4	轴 5	轴 6
3KG	400W	400W	200W	100W	100W	100W
5KG	1500W	1000W	1000W	200W	100W	100W
6/10KG	1500W	1000W	1000W	200W	200W	200W
20/30KG	2500W	1500W	1500W	400W	400W	400W
35KG	3000W	3000W	2000W	750W	750W	600W
50KG_1	2500W	1500W	1500W	750W	750W	750W
50KG_2	5400W	5400W	3000W	1000W	1000W	750W
175KG	5000W	5000W	5000W	3000W	3000W	2000W
200KG	7500W	7500W	5000W	3000W	3000W	2000W

注意:如需其他功率配置,请联系销售人员。

四、产品信息

基本规格					
	汨 庄	使用温度: -20℃~50℃			
	価度	储存温度: -40℃~85℃			
	湿度	0~90%RH以下(无结露环境)			
使用环境	使用高度	海拔 2000m 以下			
	振动冲击	<1G			
	散热方式	自然冷却/外部环境制冷			
	IP 等级 / 污染度	IP20/污染等级 2			
编码器		17bit /23bit/25bit 绝对型			

CT-RS 机器人多轴伺服驱动器

檢λ輪山迎□	I/0 信早	输入	6个	
制八 割 古 垧 口	1/01音与	输出	4 个	
通信功能	1	JSB 2.0	与 PC 连接、调试伺服驱动器用	
	显示功能		5位 LED7 段码显示	
	ST0 功能		支持	
	虚拟电机 VWM	模式	支持	
	再生回路功	台上	外置制动电阻	
	保护功能		过电流、过载、过电压、低电压、超速、过热、 位置超差、编码器异常、通信异常、心跳异常、 软件限位、硬件限位、急停、缺相检测、功率板 掉电检测等。	
	控制模式		周期同步位置控制 CSP; 周期同步速度控制 CSV; 同期同步转矩控制 CST; 回零模式 HM; 本地位置模式; 本地速度模式; 本地转矩模式; 脉冲指令模式;	
		T-11台比主	JUG 榠式; □ 枚	
		均肥为	20份 1	
I/0 功能	输入功能		1. 述切留芯仔 2. 驱动器错误清除 3. 其他保留定制	
	输出功能		 1. 驱动器错误 2. 驱动器 Ready 	
	位置命令格式		EtherCAT 周期性数字量 本地位置模式、上位机选择功能	
位置模式	平滑滤波器		对位置指令做平滑处理,使电机运转更平滑稳定	
	抑振滤波器		可以有效抑制外部信号干扰,及系统共振频率, 保证设备运行稳定	
	速度	度命令格式	EtherCAT 周期性数字量	
		电压波动	额定电压±10%: ≤ 0.1%(额定转速下)	
速度模式	速度变动率	负载波动	0-100%负载时: ≤ 0.1%(额定转速下)	
		温度波动	25±25℃: ≤ 0.1%(额定转速下)	
加初		速设定范围	0-10S	
转矩模式	Í.	命令形态	EtherCAT 周期性数字量	
回零模式	μ	零方式设定	通过 EtherCAT 总线配置,支持多种回零模式	
		陷波器	5级陷波器可配置	
甘油	自	整定功能	惯量识别、参数整定、机械特性检测、振动抑制	
大吧	Ē	电子齿轮	自由设定	
	Ē	日志记录	30 组历史异常信息记录	

五、产品配件

序号	名称	数量
1	使用说明书	1
2	配套连接器	配套

六、主接线

- 6.1 产品尺寸(mm)
 - 6. 1. 1 RS3A/ RS4A

6. 1. 2RS5A/ RS6A

6.2 接线示意图

6. 2. 1 RS3A/ RS4A

6. 2. 2RS5A/ RS6A

6.3 驱动器电源接线

6.3.1 电源及制动电阻连接

注: 总输出功率超过 1500W 时, 建议采用三相电源接入。

连接器	PIN 名称		描述
D1	R S T	AC 主电源端子	三相 AC200V-240V 或者接单相 AC200V-240V(接 R/S/T 任意两端), +10%~-10%, 50/60HZ
ΡI	P B	制动电阻端子	在 P 和 B1 之间接制动电阻
	PE	保护地端子	接电源保护地

6.4 伺服电机轴 X 连接

6.4.1动力线连接

连接器	PIN	名称	描述
M1 ~MG	U V W	轴X电机动力线端子	法按伺服也担于担卫地建
MI MO	PE	轴X接保护地端子	任按何服电机二相及地线

6.4.2编码器连接器(ENC)

连接器	PIN	信号名称	功能	
	1	+5V	编码器电源+5V	State of the second
	2	D+	串行数据(+)	►1 ====================================
$ENC1 \sim ENC6$	3	GND	编码器电源 OV	
	4	D-	串行数据(-)	

6.4.3电机抱闸连接

连接器	PIN	信号名称	功能	
	1	+24V	需要外接 24V 电源正	
	2	24VGND	需要外接 24V 电源负	
	3	BR1+	轴1 抱闸正	
F	4	BR1-	轴1 抱闸负	1 2 X2
	5	BR2+	轴2抱闸正	
	6	BR2-	轴2抱闸负	
vo	7	BR3+	轴3抱闸正	DK1_4
X2 -	8	BR3-	轴3抱闸负	
	9	BR4+	轴4抱闸正	
	10	BR4-	轴4抱闸负	
	11	BR5+	轴5抱闸正	
	12	BR5-	轴5抱闸负	
	13	BR6+	轴6抱闸正	
	14	BR6-	轴6抱闸负	

6.5 I/0 接线

连接 器	PIN	信号名称	描述	功能	
	1	DICOM	数字输入公共 端,接 DC24V		▶1 2 X1
	2	DICOM	数字输入公共 端,接 DC24V		10 1 10 A
V 1	3	DI1	数字输入1	急停	DI1-6
Å1	4	DI2	数字输入2	清除错误	
	5	DI3	数字输入3	驱动使能	D01-4
	6	DI4	数字输入4	保留定制功能	
	7	DI5	数字输入5	保留定制功能	
	8	DI6	数字输入6	固件升级功能	

15 | 52

0	DOCOM	数字输出公共	
9	DOCOM	端,接0V	
10	DOCOM	数字输出公共	
10	DOCOM	端,接0V	
11	D01	数字输出1	错误/告警信号
12	D02	数字输出 2	Ready 信号
13	D03	数字输出3	保留定制功能
14	D04	数字输出 4	保留定制功能

数字输入接口电路,可由开关、继电器、集电极开路三极管、光电耦合器 等进行控制。

如常见 PM 系列限位开关:

NPN输出

输出 D01[~]D04 接口电路相同,输出电路采用三极管,可与继电器、光电耦合器连接。当为继电器输入时,请务必接入续流二极管,且方向正确,否则可能损坏 D0 端口。若为光耦输入时,请接入限流电阻,其中最大允许电压 DC30V,最大电流 DC30mA。

6.6 ETHERCAT 连接

连接器	信号	方向	TSIS STALLARD
IN	ECAT-IN	Ι	117
OUT	ECAT-OUT	0	
			RJ45

6.7 USB 连接

连接器	PIN	信号	方向	
	1	5V	Ι	AL.
	2	差分 DM	I/0	
USB	3	差分 DP	I/0	A A A A A A A A A A A A A A A A A A A
	4	ID	_	41
	5	GND	_	USB 2.0 TYPE A
注:线缆	采用 USB 公法	对公的延长线。		

6.8 ST0 安全功能连接

连接器	PIN	信号	方向	功能
ХЗ	1	HWBB1+	Ι	使 HWBB 功能失效(正常运

CT-RS 机器人多轴伺服驱动器

			行)	
2	HWBR1-	Т	使 HWBB 功能有效(切断电	
IJ	IIWDD1	Ţ	机电流)	N1
9	IIWDD9	т	使 HWBB 功能失效(正常运	2 43
ა	Π₩DD∠⊤	1	行)	
4	IIWDD9	т	使 HWBB 功能有效(切断电	STO
4	П₩ВВ2-	T	机电流)	
F	EDM1 +	0	HWBB1 和 HWBB2 信号正常	Constant and Colored and
Э	EDM1+	0	工作	
6	EDM1-	0	HWBB1 和 HWBB2 信号异常	

注 1: 输入信号(HWBB) 内部阻抗 4.7kΩ,工作电压 DC24V±20%

注 2: 输出信号(EDM1)最大容许电压 DC 30V,最大容许电流 DC50mA

七、快速配置

快速配置非专家调谐模式,适用于客户自己匹配电机场景,或帮助客户快速 完成调试的初步阶段。

7.1 驱动器连接

先安装 USB 设备驱动,打开 TodServo 控制软件,选择 CT-RSX 多轴系列启动入口,刷新并连接产品。

注: 详细软件使用方法见《TodServo 控制软件使用手册》。

7.2 虚拟电机模式

在 TodServo 的右侧标题栏,点击 VWM 打开虚拟电机模式。在该模式下,产 品会屏蔽硬件错误模拟正常功能运行。VWM 旨在方便客户或相关测试人员在没有 连接电机和编码器的情况下,测试验证产品工作逻辑,比如匹配控制器、查看波 形等。目的是方便客户在项目前期快速调试设备。在正常运行时需要关闭 VWM 模 式并写入 EEPROM。

7.3 轴切换

	位置环		1Man:1Proc nb	l:iSer: confs:	1:2:0 1			
\odot	归航							
	归航							
\odot	ETHERCAT							
	操作模式							
	PDO配置							
	位置反馈							
\odot	整定							
	整定							
\odot	示波器/工作模式							
	示波器							
	轴一 轴二 轴三							
	和四 轴五 轴六 Mode 轴一	终边	岩 示波哭	Ta (A) .	0 00	Th(A).	0 00	由压(双)

软件初始默认为轴一进行操作,每个轴的参数完全独立,需要每个轴进行 独立配置。

7.4 电机适配

7.4.1 写入出厂电机参数

进行当前轴的电机参数配置,选择电机信息→选择电机→保存至驱动器 →Save to Eeprom,即完成所选电机参数写入。

Tod 文件 设置 工具 帮助 Save To) Eeprom			<u>急</u> 停 ─□ ×
	2			
本 注向员	2			
1/ 选择电机				
♥ 参数配置				
出厂设置 电机种类: PMS	5M · 系列: LAFERT · 型	号: B1020J2M7BTB00T5 •		
認知識性的		B1020J2M7BTB00T5		
	名标	B36B6Q3M7ATD00T5	值	单位
电机信息	额定电压	B36E2Q3M/ATD00T5		VAC
数字I/O 保存到驱动器	器 3 額定功率	B30F4Q0M/ATD00T5-1		W
11 107 -th 98 th 1	# 私 額定电流	B6308X6M7ATB0015		A
模拟/O // 地名/哈尔斯	** 峰値电流	Desteration		A
限定 复制到用户」	库 失速转矩	20.0		Nm
40710 02 4A-00	設定特定	18.3		Nm
制际电机	取入书程	2000		NM .
寄存器(调试)	BOLE 19 28	4000		rpm
◎ 控制	統制のなどの	33		10e-4Kg.m2
	相间电阻	0.5		Ω
电流坏	D轴电感	6.2		mH
速度环	Q轴电感	6.2		mH
A-5 100 27	线反电动势常数			V/krpm
	转矩系数	1.4		N.m/A
중 运动模式	电气时间常数			ms
工作提升	机械时间常数			ms
LIFBUT	擊值转起加速度	22727		Rad/sec2
归航	电压常数	0.81		VS
	10.21単位、トロジス・ロネリタイ 10.21単位	170		VIIIIS 3486
	快时间蒙勒	33		min
操作模式	热保护调值	140		°C
PDO配置	校验	0		
亚直 区顷				
	电机编码器配置			
整定	编码器类型	单圈分辨率	多圈数	
	多摩川协议的23bit多圈绝对值编码;	器 - 8388608	65535	
示波器				
Mode 终端 示波器 Ia	a(A); 0.00 Ib(A); 0.00 电压(V); 0.00) 温度(℃): 0.00	速度(RPM): 0.00	位置: 〇 園数 ● 脉冲 0.00 🛛 🛶 🔘

7.4.2 第三方用户电机的导入

选择任意电机模型→复制至用户库→电机名称+自定义电机参数→保存,之后即可在用户库中发现该电机,按正常流程使用即可。

Tod 文件 设置	工具 帮助 Save To Eeprom				STO VWM SJOG
⊙ 连接	电机信息				
连接向导	· 또 1고 由 10				
参数配置	12/1年电16	5 N			
出厂设置	电机种央: PMSM	 • 系列: USER ◆ 型号: T 	H_THA060401C2BD300 •		
驱动器信息	电机信息	■ 新建用户电机			? ×
电机信息	保存到驱动器				
数字1/0	从驱动哭加载	电机名称: NewMotor 🛹 🕗 保存电	机名字		保存取消
観曲	有利利用自由	Name	Value	e	Units4、完成后点击保存
塩石器校会		同到用高库	220	VAC	
	903107 HG-70 C	额定功率	400) (t)+(1.4)%/	
 ·		額定电流	2.2999999523	人电机参数 A	
电流环		峰值电流	6.900000954	А	
速度环		失遗转矩	3.7999999523	Nm	
位置环		額定转矩	1.2699999809	Nm	
⑦ 归航		優大转炬	308	Nm	
归航		筋中にに	2000	mm	
ETHERCAT			1000	1pm	
操作模式		取尚转送	4000	rpm	
白澤后法		转动惯量	0.310000024	10e-4Kg.m2	
		相间电阻	5.5100002289	Ω	
 ● 11.2. 総定 		D轴电感	14.8000001907	mH	
√ 示波器/工作模式		Q轴电感	14.8000001907	mH	
示波器		线反电动势常数	40.4000015259	V/krpm	
		转炬系数	0.5500000119	N.m/A	
		电气时间常数	0	ms	
		编码裴举型 单		(数) (後路空話36	时(ns) 线路设置延

7.5 限值设定

分别完成当前轴的位置限定、速度限定、电流限定、母线电压限定、温度限 定、抱闸限定、制动电阻限定。

⊙ 连接	限定
连接向导	
	位置限定 速度限定 电流限定 母线电压限定 温度限定 抱闸限定 制动电阻设定
出厂设置	位置误差
驱动器信息	最大位置误差 4 rev
电机信息	
数字I/O	
模拟I/O	软限位
限定	软件限位使能开关 🛛 🗸 🗸
编码器校零	最小位置阻位 10000 rev
寄存器(调试)	
⊗ 控制	最大位置限位 10000 rev
电流环	
速度环	

7.5.1 电机抱闸设定

对于抱闸电机必须对其抱闸进行设置,否则会引起运行安全问题。抱闸功能 框图如下:

艮定				
位置限定 速度	限定 电流限定	母线电压限定	温度限定	抱闸限定
有效由亚				
低电半	\sim			
		_		
抱闸松开延迟 50	时间量 (ms) ms			
]			
抱闸抱死延迟	时间量(ms)			
50	ms			
停机减速度				
50	rp/s2			
L				

7.6 1/0 功能设定

连接向导									
● 参数配置	数字输入					数字输出			
出厂设置	有效电频		低电平		~	有效电频	低电平		~
驱动器信息	滤波参数 (1	Ons)	0			通道配置			
电机信息	通道配置					通道名称	功能		连接引脚
数字I/O	通道名称	功能		通道状态	连接引脚	output1	错误	~	output1
機説I/O	input1	急停	×	•	input1	output2		~	output2
限定	input2	NULL	~ ~	•	input2	output3	NULL	~	output3
编码器校零	input3	NULL	~	•	input3	output4	NULL	~	output4
寄存器(调试)	input4	NULL	~	•	input4	output5	NULL	~	output5
	input5	NULL	~	•	input5				
电流环	input6	NULL	~ ~	٠	input6				
速度环	input7	NULL	~	•	input7				
位置环	input8	NULL	~	•	input8				
☞ 归航	input9	NULL	~ ~	•	input9				
日航	input10	NULL	~	•	input10				
操作模式									
PDOLE									
位置反馈									
V 182									

7.7 参数整定

第一步,在电机参数设定正确后,进入整定页面,只选择参数整定,再下一步。

Tod 文件 设置	工具帮助	Save To Eeprom				
	整定					
连接向导						
✓ 参数配置	— 	K	参数整定			
出厂设置			2 MEA			
驱动器信息						
电机信息						
数字I/O						
模拟I/O		顷重 识别				
限定		参数敷完		1		
编码器校零	⊻ .					
寄存器(调试)	□,	机械特性检测				
⊗ 控制						
电流环		振动抑制				
速度环						
位置环						
⊘ 归航						
归航						
操作模式						
PDO配置						
位直反馈						
 ● 整定 						
整定						
→ 示波器/工作模式						
示波器						

第二步,整定输入参数可默认输入如下,点击开始,等待整定完成后点击保存。

电流环带宽	1000
电流环阻尼	20
速度环带宽	100
转动惯量比	1
位置环带宽	10

注: 以上只是一个常规配置,并不代表产品最高性能。

Tod 文件 设置	工具 帮助 Save To Eeprom		亭止 - O ×
④ 连接	整定		
连接向导			
参数配置	- 开始		
出厂设置			
驱动器信息	整定>>参数整定		
电机信息			
数字1/0	- 整定输入	整定输出	
Beski/O	电流环带宽 1000	Kp_cur_d 0	
絵石器が変	电流环阻尼 20	Ki_cur_d 0	
	速度环带宽 100	Kc_cur_d 0	
 ※ 控制 	转动惯量比 1	Kp_cur_q 0	
电流环	位置环带宽 10	Ki cur g 0	
速度环		Kc cur g 0	
位置环		Kn sneed 0	
⊙ 归航		kp_speed 0	
		Ki_speed 0	
ETHERCAT		Kp_pos 0	
課行を提示し PDの記号			
位置反馈	#0	开始	
 整定 		2178	
整定			
⊙ 示波器/工作模式			
示波器			
		保存	上一步下一步
	I		

7.8 电机校零

针对未校零的电机,在使用前务必要先校零,否则直接使用可能导致运行故 障或引起安全事故。对已经校零的电机可以忽略此步。

但是,强烈建议在不清楚电机状态的情况下,最好完成校零步骤。

第一步,进入编码器校零页面,设定调零电流(一般可设为电机额定电流的 0.25[~]0.5倍之间)、选择编码器的类型、相序方向(默认),点击开始校零。

To	d 文件 设置	工具 帮助 Sav	e To Eeprom
•	车接	编码器校零	
	连接向导		
\odot	参数配置		
	出厂设置	14	4 180 216
	驱动器信息	108	252
	电机信息		
	数字I/O	訂 /2	
	模拟I/O	136	324
	限定	I	
	编码器校零	A C	0 360
	寄存器(调试)	Ť	0 •
\odot	控制		
	电流环	调零电流:	0.5 A
	速度环	编码器类型:	多摩川协议的17bit多圈绝对值编码器 ▼
	位置环	相序方向:	多摩川协议的17b1t多圈绝对值编码器 多摩川协议的23bit多圈绝对值编码器
<u>ا</u>	归航		EnDat协议的多圈绝对值编码器
	归航		HIPERFACE协议的多圈绝对值编码器
\odot I	ETHERCAT		多摩川协议的25bit多圈绝对值编码器
	操作模式		
	PDO配置		
	位置反馈	开始校家	
\odot	整定	717412.3	
	整定		
\odot	示波器/工作模式		
	示波器		

第二步,等待电机微动校零过程结束,大约在 10 秒左右,观察图中码盘指 针已经稳定后(或者在 0 和 360 度之间跳转),点击停止校零,弹出对话框,选 择确定清除码盘值,此时在软件右下角可以观测到圈数或脉冲值已经归零。

7.9 试运行(JOG)

在完成以上步骤后,可以进入点动试运行阶段。

进入示波器/工作模式页面,选择: Jog 模式→设定好速度指令+限幅保护指 令+斜坡时间→按住 JOG 按钮(即按即运行,即松即停),运行模式按图中曲线设 定。同时根据需要,可以同时使用示波器功能,观测运行波形。

7.10 参数保存

如调试结果满意,可以随时点击 "Save To EEPROM",或者在终端窗口输入命令: saverom,进行全部参数掉电存储。

整定	prom				急停
开始	惯量识别	参数整定	机械特性检测	振动抑制	
整定>>振动检测和抑	制				
时域 频域					整定输出
5.00					振动频率
3.89					参数名称 参数值
2.78					陷波器1使能
1.67					陷波器1深度
0.56					陷波器1宽度
-0.56					陷波器1中心频率
-1.67					陷波器2便能
-2.78					陷波器2深度
-3.89					陷波器2宽度
-5.00	1111 2222 33	33 4444 5555	6666 7777	8888 1000	陷波器2中心频率
		ms			陷波器3便能
振动检测源: 电流	₹ 采样点: 1	•	0%		陷波器3深度
振动检测源: 电流	₹ ▼ 采样点; 1	•	0%	加载 开始	陷波器3深度 陷波器3宽度
振动检测源: 电流	ī ▼ 采样点: 1	•	0%	加载 开始	陷波器3深度 陷波器3宽度
振动检测源, 电流	〔 ▼ 采样点: 1	•	0%	加载 开始	陷波器 深度 陷波器 3 宽度 保存 上一步
振动检测源, 电流 le Scope 电流A	₹ • 采样点; <u>1</u> .: 0.00 电流B,	▼	0%) 温度, 0.00	加载 开始 速度: 0.00 句	箱波器3深度 箱波器3双度 保存 上一歩 立置。○ 問数 ● 脉冲 0.00
振动检测源, 电流 le Scope 电流A	 ₹¥点: 1 .0.00 8\[mathcase{abstrained} 	-0.00000 电压, 0.0	0%) 温度,0.00	加载 开始 速度,0.00 名	招波器3茨度 招波器3茨度 保存 上一歩 立置・○ 圏数 ● 脉冲 0.00
振动检测源, 电流 e Scope 电流和	 ₹ ₹	-0.00000 电压, 0.0	0%) 温度,0.00	加载 开始 速度: 0.00 名	招波器3茨度 招波器3茨度 保存 上一歩 定 二 「 ロカー 「 ロカー 「 ロカー 「 ロカー 」 「 ロカー 」 「 ロカー 「 ロカー 「 ロカー 「 ロカー 「 ロカー 」 「 ロカー 「 ロカー 「 ロカー 「 ロカー 」 「 ロカー ロカー 「 ロカー ロカー 「 ロカー ロカー 「 ロカー ロカー 「 「 「 ロ 「 「 「 「 「
振动检测源, 电流 服力检测源, 电流	 ₹構点: 1 .: 0.00 电流B, 	-0.00000 电压, 0.0	0%) 溫度, 0.00	加载 开始 速度: 0.00 右	松波器3茨度 松波器3茨度 保存 上一歩 文置: ○ 岡敦 ● 脉冲 0.00 □
振动检测源, 电流 服力检测源, 电流	 ₹ ₹	-0.00000 电压, 0.0	0%) 溫度, 0.00	加载 开始 速度: 0.00 右	約波器3定度 約波器3定度 保存 上一步 立覧:○ 图数 ● 脉冲 0.00
振动检测源, 电流 le Scope 电流	₹ • 采 样点, 1	-0.00000 电压, 0.0	0%) 温度,0.00	加载 开始 速度: 0.00 名	約成器3元度 約成器3元度 除存 上一歩 立室,○ 周数 ● 脉冲 0.00
振动检测源, 电流 le Scope 电流和	₹ • 采 样点, <u>1</u>	▼	0%) 温度,0.00	加载 开始 速度; 0.00 名	能波器3定度 指波器3定度 保存 上一步 正 で ロ の 図 の 図 の 図 の 図 の 図 の の
振动检测源, 电流 le Scope 电流和	₹ • 采样点, <u>1</u>	-0.00000 电压, 0.0	0%) 温度, 0.00	加载 开始 速度; 0.00 名	和波器3定度 和波器3定度 和波器3定度 マーク マ
振动检测源: 电流 le Scope 电流 WMDer	₹ ▼ 采样点, 1	-0.00000 电压, 0.0	0%) 温度, 0.00	加载 开始 速度: 0.00 名	和波器3定度 和波器3定度 和波器3定度 常存 上一歩 正 で ロ 「保存 上一歩 立置: ○ 图数 ● 脉冲 0.00 □
振动检测源, 电流 le Scope 电流 WMDer Com	₹ ¥点, 1	-0.00000 电压, 0.0	0%) 温度, 0.00	加载 开始 速度: 0.00 名	和波器3定度 和波器3定度 和波器3定度 常存 上一歩 立置・ ○ 图数 ● 脉冲 0.00 □ □ □
振动检测源, 电流 e Scope 电流 wmper rom	 ₹样点, 1 0.00 电流в, 	-0.00000 电压, 0.0	0%	加载 开始 速度: 0.00 名	約波器3定度 約波器3定度 保存 上一歩 立置・○ 图数 ● 脉冲 0.00

7.11 其他轴调试

对于其他轴的调试, 依次按照本手册 7.3 节至 7.9 节所述方法进行操作, 直 至完成产品所有轴的调试。

7.12 多轴联动

◆ 多轴联动是基于 EtherCAT 总线,在控制器平台进行操控。

◆ 如需本地测试模拟,为了安全考虑请联系技术支持远程指导。

八、专家模式

8.1 控制环路参数设定

进入控制页面,对控制环路参数(电流环、速度环、位置环)进行调整。涉 及陷波器、前馈模块、滤波器、PID参数等的设定。

8.2 参数整定

参数整定包含了惯量识别、参数整定、机械特性检测、振动抑制功能。可根据实时整定的波形对整定出来的参数进行微调设置即可,直到达到理想的控制波形。

CT-RS 机器人多轴伺服驱动器

Tod 文件 设置	工具 帮助	Save To Eeprom					STO VWM S	sjog <mark>停止</mark> CLEAR	- 0 ×
⊙ 连接	整定								
连接向导									
(♥) 参数配置 い□□○□第	— म	Mi(惯量识别	参数整定	机械特性检测	振动抑制			
(1)(1)日									
电机信息									
数字1/0									
模拟/0	2	惯量识别							
限定 编码器校零	V	参数整定	2. 选择整定的	的内容					
寄存器(调试)	V	机械特性检测							
电流环 速度环	V	振动抑制							
位置环									
受 归航									
操作模式									
PDO配置	1								
位置反馈	1.								
● 整定									
示波職									
77100.00									
								保存 上一步	下一步
**	an 42 4	a = 34-80	N- (N) 0 000000 N				e statu anna a		

8.2.1 惯量识别

Tod 文件 设置 I	四月 帮助 Save To Eeprom			l i		STO VWM	SJOG 停止 CLEAR
● 连接	整定						
连接向导 参数配置 出厂设置	— 开始 — 惯量 调	\$	效整定	机械特性检测	振动抑制		
驱动器信息 曲印 (4 四	整定>>惯量识别						
数字1/0	整定输入		整定输出				
模拟I/O	慣量识别模式	•	整定转动传	量 200			
限定 編码器校零	电机转动惯量 30		转动惯量日	1			
寄存器(调试)	位置辨识参数						
控制	位置惯量辨识位置1 40	0					
电流环 速度环	位置惯量辨识位置2 40	0	⇒				
位置环	位置惯量辨识位置3 40	0					
198% 198%	位置惯量辨识PP到达时间 40	0					
THERCAT	位置惯量辨识到位等待时间 40	0					
操作模式							
0000000000000000000000000000000000000		0%			开始		
定							
整定							
示波器/工作模式							
770288							
							保存 上一步

8.2.2参数整定

od 文件设置	工具 帮助 Save To Eeprom		STO VWW SJOG 停止 CLEAR
	整定		
连接向导			
参数配置	— 开始 惯量识别	参数整定 机械特性检	检测 振动抑制
出り設置			
电机信息	整定>>参数整定		
数字I/O	整定输入	整定输出	
機説!/0	电流环带宽 1000	Kp_cur_d 45.867298126	262
限定 (CTI 09+035)	电流环阻尼 20	Ki_cur_d 13.980099678	78
高马品12.¥ 高存儲(周试)	速度环带宽 100	Kc_cur_d 0.0218020007	07
4	转动惯量比 1	Kp_cur_q 45.867298126	262
电流环	位置环带宽 10	Ki_cur_q 13.980099678	78
速度 环		Kc_cur_q 0.0218020007	07
位置大		Kp_speed 0.2243009955	55
旧航		Ki_speed 0.0035230001	01
HERCAT		Kp_pos 111.98899841	4131
操作模式			
PDORE			7.44
≌. m .tx,v ⊼		08	开始
驗定			
器/工作模式			
示波器			
			保存上一步。

8.2.3机械特性检测

8.2.4 振动抑制

山具り	助 Save To Eep	rom										STO	VWM SJOG <mark>停</mark>	L CLEAR
36.75	T .()		4.85	ale come		1 Pat 14 14 19		In all Made						
12	开始	領重识别	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	222	-BL	械特任检测		振动抑制						
整测	E>>振动检测和抑制	1											整定输出	
	19.4% 研究												<u>振</u> 动频率 0	
	5.00												参数名称	参数(
to	3.89												院設備1使能	0
	2.78												PESIZER LIXUE	0
													防波器1中心频道	E O
	1.67												陷波器2使能	0
	0.56												陷波器2深度	0
													陷波器2宽度	1000
	-0.56												陷波器2中心频率	£ 8000
	-1.67												陷波器3使能	0
	-2.78												陷波器3深度	0
													陷波器3宽度	0
	-3.89												陷波器3中心频率	£ 0
	-5.00												陷波器4使能	0
	0.00	11111.11	22222.22 3	3333.33	4444	4.44 ms	55555.56	66666	5.67 77	117.78	88888.89	100000.00	陷波器4深度	0
													陷波器4宽度	0

8.3 控制模式

8.3.1 JOG 模式

JOG 点动运行参见 7.10 节内容。

8.3.2 本地转矩正弦曲线

特殊模式:用于测试驱动器电流环响应带宽,如需测试联系索取《CT-RSX多轴带宽测试》。

8.3.3 本地转矩阶跃曲线

特殊模式:用于测试驱动器电流环阶跃响应。

♥ ETHERCAT	终端 运动模式		
操作模式			
PDO配置	模式选择:本地转矩阶跃曲线 🗸		
位置反馈		指令:	
	Та	(描述) (描述) (描述)	
整定	< 即获申前 →		
⑦ 示波器/工作模式	_	阶跌时间:	
示波器	指令		
	· · · · · · · · · · · · · · · · · · ·		
		开始停止	
		/т∧ц 11- 11- 11- 11- 11-	-

8.3.4本地转矩指数曲线

特殊模式:用于测试驱动器电流环是否正常响应。

	终端 运动模式	
操作模式		
PDO配置	模式选择:本地转矩指数曲线 🗸	
位置反馈		
	τα	指令:
整定		滤波系数:
⊙ 示波器/工作模式		L
示波器	T	开始停止

8.3.5本地速度斜坡曲线

8.3.6本地速度阶跃曲线

8.3.7本地速度梯形曲线

ⓒ ETHERCAT	终端 运动模式		
操作模式			
PDO配置	模式选择: 本地速度梯形模式 🗸		
位置反馈		反向使能:	使能
	, v	指今.	
整定		18 4 .	
⑦ 示波器/工作模式		加速度:	
示波器	-+EEEDIA+	恒速时间: 开始	停止

8.3.8本地速度正弦曲线

8.3.9本地速度脉冲曲线

♥ E	THERCAT	终端 运	訪模式		
	操作模式				
	PDO配置	模式选择:	本地速度脉冲曲线 🚽 👻		
	位置反馈			指令限幅:	
🗑 💈	整定				
_		Î	v	电子齿轮分子:	
	322AE			由子齿轮分母,	
⊘ 7	示波器/工作模式		V=1/Δt*电子齿轮比分子/电子齿轮比分母	.01 210/).	
	示波器		-> [] t		
			nnnnn		
			т		
			F		
					
					1号止

8.3.10 本地位置指数曲线

8.3.11 本地位置斜坡曲线

	终端 运动模式	
操作模式		
PDO配置	模式选择:本地位置斜坡曲线 🗸	•
位置反馈		
	₽ ▲	位置指令:
整定		斜坡速度:
⑦ 示波器/工作模式		
示波器	位 西 席 ◆ T	
		开始 停止

8.3.12 本地位置梯形速度曲线

	终端 运动模式		
操作模式			
PDO配置	模式选择: 本地位置梯形速度曲线 🚽		
位置反馈 ◆ 整定 ◆ 示波器/工作模式		反向使能: 速度指令: 加速度: 恒速时间: 开始	使能 ◆

8.3.13 本地位置正弦曲线

8.3.14 本地位置双曲线

8.3.15 本地位置模拟曲线

ETHERCAT	终端 运动模式
操作模式	
PDO配置	模式选择: 本地位置模拟曲线 🗸
位置反馈	位置指令:
整定	
整定	指令加速度:
示波器/工作模式	
示波器	位置/6令
	开始停止

8.3.16 本地位置脉冲曲线

🕑 归航	ms
归航	
	终端 法利益书
操作模式	
PDO配置	模式选择: 本地位置脉冲曲线 →
位置反馈	位置限幅:
 	h. h
整定	
중 示波器/工作模式	P= Σcrat*电子齿轮比分子/电子齿轮比分号 电子齿轮分母:
- 示波器	

九、EtherCAT 工作设定

9.1 对象字典

9.1.1 设备描述

CT-RS 机器人多轴伺服驱动器

对象名称	索引	数据长度
Device type	1000	unsigned 32
Error Register	1001	unsigned 16
Device name	1008	自定义
Hardware version	1009	自定义
Software version	100A	自定义
Identity	1018	自定义
Error Settings	10F1	自定义
Times tamp	10F8	unsigned 64

9.1.2轴N(N=0---5)

对象名称	索引	数据长度
Error Code	603F+N * 0X800	unsigned 16
Control Word	6040+N*0X800	unsigned 16
Status Word	6041+N * 0X800	unsigned 16
Quick Stop Option Code	605A+N*0X800	signed 16
Modes Of Operation	6060+N*0X800	signed 16
Modes Of Operation Display	6061+N*0X800	signed 16
Position Demand Value	6062+N * 0X800	signed 32
Position Actual Value	6064+N*0X800	signed 32
Velocity Demand Value	606B+N*0X800	signed 32
Velocity Actual Value	606C+N*0X800	signed 32
Target Torque	6071+N*0X800	signed 16
Max Torque	6072+N*0X800	unsigned 16
Torque Demand Value	6074+N*0X800	unsigned 32
Motor Rated Torque	6076+N*0X800	unsigned 32
Torque Actual Value	6077+N*0X800	signed 16
Target Position	607A+N*0X800	signed 32
Home Offset	607C+N*0X800	signed 32
Software Position Limit	607D+N*0X800	2X signed 32
Homing Method	6098+N*0X800	signed 16
Homing Speeds	6099+N * 0X800	signed 32
Homing Acceleration	609A+N*0X800	unsigned 16
Position Offset	60B0+N*0X800	signed 16
Velocity Offset	60B1+N*0X800	signed 16
Torque Offset	60B2+N*0X800	signed 16
Touch Probe Function	60B8+N*0X800	unsigned 16
Touch Probe Status	60B9+N*0X800	unsigned 16
Touch Probe Posl Pos Value	60BA+N*0X800	signed 32

40 | 52

CT-RS 机器人多轴伺服驱动器

Touch Probe Posl Neg Value	60BB+N*0X800	signed 32
Touch Probe Pos2 Pos Value	60BC+N*0X800	signed 32
Touch Probe Pos2 Neg Value	60BD+N*0X800	signed 32
Interpolation Time Period	60C2+N*0X800	unsigned 32
Following Error Actual Value	60F4+N*0X800	signed 32
Digital Inputs	60FD+N*0X800	unsigned 32
Digital Output	60FE+N*0X800	unsigned 32
Target Velocity	60FF+N*0X800	signed 32
Supported Drive Modes	6502+N*0X800	unsigned 32

9.1.3 自定义区域(N=0…5)

轴 N 编码器分辨率	2000+N*0x20	unsigned 32
轴 N 告警状态	201F+N*0x20	unsigned 32

Object 2000+N*0x20:轴 N 编码器分辨率

索引	2000
名称	轴X编码器分辨率
Object Code	VAR
数据格式	UNSIGNED32
PDO 映射	No
设定范围	0~4294967295
默认值	17
单位	P/Rev
更改方式	不能更改

Object 201F+N*0x20:轴 N 告警状态

索引	201F
名称	轴X告警状态
Object Code	VAR
数据格式	UNSIGNED32
PDO 映射	No
设定范围	0~4294967295
默认值	0
单位	

更改方式

不能更改

9.2 RXPD0 映射

9.2.1 轴 N (N=0…5)

模式	RXPDO	对象	长度	
		ControlWord	unsigned 16	
CSP	1600+N*0X10	Target Position	signed 32	
		Modes Of Operation	signed 16	
		ControlWord	unsigned 16	
CSV 1601+N*0X10	1601+N*0X10	Target Velocity	signed 32	
	Mode00peration	signed 16		
		ControlWord	unsigned 16	
CST	1602+N*0X10	1602+N*OX10 Target Torque		signed 16
		Modes Of Operation	signed 16	

9.3 TXPD0 映射

9.3.1 轴 N (N=0---5)

模式	RXPDO	对象	长度
		StatusWord	unsigned 16
		Position Actual Value	signed 32
CST	1A00+N*0X10	Modes Of Operation Display	unsigned 16
		Error Code	unsigned 16
		Digital inputs	unsigned 32
	1A01+N*0X10	StatusWord	unsigned 16
		Velocity Actual Value	signed 32
CSP		Modes Of Operation Display	unsigned 16
		Error Code	unsigned 16
		Digital inputs	unsigned 32
	1A02+N*0X10	StatusWord	unsigned 16
CSV		Torque Actual Value	signed 16
		Modes Of Operation Display	unsigned 16

CT-RS 机器人多轴伺服驱动器

	Error Code	unsigned 16
	Digital inputs	unsigned 32

9.4 清多圈值功能

ControlWord[12]上升沿有效;

9.5 清驱动器错误

ControlWord[7]上升沿有效;

十、固件升级功能

10.1 工厂模式启动

软件启动模式(首选):连接上位机 TodServo 成功后,在终端命令窗口输入 命令: stfactory,返回成功后产品会在下次上电自动进入工厂模式。

硬件启动模式:参考 6.5 节,在上电前接入连接器 X1 的 DI6 信号并使其低 电平有效,接法如下:

PIN	信号名称	接入
1 或 2	DICOM	DC24V+
8	DI6	DC24V-

上机开机自动进入工厂模式,显示为:

10.2 升级过程

1. 在上位软件启动向导选择【固件升级】:

2. 进入升级页面,连接设备→选择.tod 固件,确认校验码,选择"开始"。
 刚开始 30 秒以内,设备在擦除 FLASH 进度条会没有前进,直到进度条走到 100%成功。视固件内容差异,升级过程中设备状态可能是:

88.888	2 .2.3.2.2.2.
<u>88.888</u>	8.8.8.8.8 8.
<u>5.8.8.8.8</u>	<u>88.888</u>

请注意观察确认。

	■ 固件更新		·		?	×	7
	驱动器信息:	0x547:0x1002		~ 刷亲	Я	断开	
	au Jasia (18): 文件路径, n- DSP PFGAMI) 別運可慎, 20 修改时间; 20 作 者: 大 小: 4	/coolwise/Todserwo/ <.Rs6A_OFE6FF8B_3_1(22-10-17_10:23:05 22-10-17_10:21:08 327936 bytes	CT_SX/CT_RSX_TodSer D9E1B94_4_2D468E43_	vo_2022101 5_FA4B5CAD	7/Bin/6_TWin.	tod	
		100%			•	开始	
汲成功,设	长 备状态:	JE DE	8.8.		厂模词	式,女	1有升级失 44 52

会有错误闪烁,需要再次升级直到成功为止,否则断电重启后也会自动进入工厂 模式要求升级。

完成升级后,如果是硬件启动模式则需要断开 DI6 重新上电可进入正常应用 模式。

3. 在上位版本确认

Tod 文件 设置 1	工具 帮助 Save To Eeprom	STO VIN PL CLEAR - O ×
☞ 连接	驱动器信息	
连接向导		
● 参数配置	驱动器名	
出厂设置	驱动器详细信息	
驱动器信息	驱动器型号: CT-RS6A	序列号: 32654646163
电机信息	圖件版本: RSXAC100C201CT01	固件版本校验: 109E1B942D468E43FA4B5CAD
数字I/O	FPGA版本: FPGA.RS6A.040404040404.3.006	FPGA版本校验: ED5E859F
限定	功率板版本:	控制板版本:
编码器校零	显示板版本:	功率板电源遗项: 三相220V ~
寄存器(调试)	位置控制方式: 绝对地址模式	~

在上位界面确认烧写软件版本及校验码。

附 A 显示内容识别

88888	电源上电过程不受控制状态。		
82385	上电启动过程中,显示 CPU 的 BOOT 版本为 2345。		
8.8.8.8. 8.	正常启动过渡状态。		
<u>8.8.8.8</u> .8.8	工厂模式,空闲状态。		
85688	闪烁提示,在工厂模式下 USB 连接不正常,自动恢复 【工厂模式下才会要求必须连接 USB】。		
8.8.8.8 .8.	闪烁显示,工厂模式正在升级 FPGA 固件。		
8 .8.8.8.8.	闪烁显示,工厂模式正在升级 SOC 固件。		
8 .8.8. 8 .8.	闪烁显示,工厂模式正在升级 FPGA+SOC 固件。		
8 .8.8. 8 .8.	闪烁显示,工厂模式正在升级 CPU0 固件。		
5 .8.8. 8 .8	闪烁显示,工厂模式正在升级 CPU1 固件。		
8 .8.8.8.8.8.	闪烁显示,工厂模式正在升级 CPU2 固件。		
8.8.8.8	闪烁显示, FPGA 固件升级失败,必须重新升级,未成 功前会强制进入工厂模式。		
88.888	闪烁显示,SOC固件升级失败,必须重新升级,未成 功前会强制进入工厂模式。		

<u>88.888</u>	闪烁显示,FPGA+SOC 固件升级失败,必须重新升级, 未成功前会强制进入工厂模式。
8.8.8.8.8	闪烁显示, CPU0 固件升级失败,必须重新升级,未 成功前会强制进入工厂模式。
<u>58.888</u>	闪烁显示, CPU1 固件升级失败,必须重新升级,未 成功前会强制进入工厂模式。
88.8.8 .8.8	闪烁显示, CPU2 固件升级失败,必须重新升级,未 成功前会强制进入工厂模式。
8.8. <u>5.8.8</u> .	冷启动或复位过程中。
88888	发送 reboot 命令后热启动或复位过程中。
88838	产品处于待机状态。
8.8.8.8.8.	产品处于运行状态。
88888	轴 X (示例为1轴)处于虚拟电机运行状态。
<u>8883</u>	闪烁显示,错误代码:01
88888	闪烁显示,警告代码:01
8.8.8.8 .8.	周期显示,X轴(示例为1轴)为本地位置工作模式。
	周期显示,X轴(示例为1轴)为本地速度工作模式。
	周期显示,X轴(示例为1轴)为JOG点动工作模式。

88.8.8.8	周期显示,X轴(示例为1轴)为本地转矩工作模式。
8.8.8.8.8.	周期显示,X轴(示例为1轴)为同步周期位置工作模式。
8.8.8.8.8	周期显示,X轴(示例为1轴)为同步周期速度工作模式。
8.8.8.8.8	周期显示,X轴(示例为1轴)为同步周期转矩工作模式。
<u> 58888</u>	周期显示,速度参数指示;即显示的下一屏数字为速度值。
8.8.8.8.5	数字显示,正数的12345。
8.8.8.8.	数字显示,负数的-12345。
8.8.8.5	数字显示,小数的123.45。
H.H.H.H.H.H.H.H.H.H.H.H.H.H.H.H.H.H.H.	数字显示,负小数-123.45;其中3后面的小数点会闪 烁显示。

附 B 错误、告警代码

			ECAT		
级别	错误	显示内容	(603F+N*	解释	
			0x800)		
	安全转矩	F 001	0001		
	HWBB1	Er001		510 功能,个可消除	
	安全转矩	E000	0002		
	HWBB2	Eruuz		510 功能,个可有际	
	CPU 通信超时	Er003	0003	检测总线通信机制,可清除	
	通信状态机超	E-004	0004		
	时	Er004			
	CPU心跳中断	Er005	0005	可清除	
	上电 CRC 错误	Er006	0006	需要 reboot 或断电重启,不可清除	
	母线过压	Er007	0007	主控系统母线过压,可清除(DSP)	
	母线欠压	Er008	8000	主控系统母线欠压,可清除(DSP)	
	SOC 启动信号	Em015	000F	雲亜 mahaat 或艇由重白 不可法险	
	丢失	Er015		而安 reboot 或勁屯重后,个可捐陈	
	SOC 参数错误	Er016	0010	需要 reboot 或断电重启,不可清除	
	保留				
	SOC 参数 2 限 完错误	Er019	0013	用 TodServo 检查位置、速度、电流	
				限定的设定,修改正确后需要	
玄统	足相庆			reboot 或断电重启,不可清除	
奶奶	SOC 参数 2CRC	Fr020	0014	雲要 rehoot 或断由重白 不可洁险	
-12	错误	L1020		而受100001 实际毛重力,不可有你	
	SOC 参数 1 限	Er021	0015	用 TodServo 检查位置、速度、电流	
	定错误			限定的设定,修改正确后需要	
				reboot 或断电重启,不可清除	
	SOC 参数 1CRC	Er022	0016	需要 reboot 或断电重启,不可清除	
	错误				
	IGBT 温度超	Er023	0017	(DSP)	
	限	P 004	0010	いやてかしし アーマログ	
	切率板掉电	Er024	0018	王控系统矢电,个可清除	
	切率极电源缺	Er025	0019	主控系统电源缺相,不可清除	
-	相		001.0		
	1/0 低限位错	Er026	ALOO	I/0 低限位到达	
	庆 工/0 声阻位进		001P		
	1/0 同胚世宿	Er027	UNTR	I/0 高限位到达	
		Fr098	0010	系统刍僖到达	
	1/0 芯厅田庆 制动长时劫陪	Er 020	0010	ホル心におや 主控系统研究対策 可清除(DSD)	
-	F1 时刻位署	Er 023	001E	土拉系统研线过压。可语险(DSD)	
	正时刻胜且	ET 090	UUIL	上江苏沉母线赵压, 时相你(DOF)	

CT-RS 机器人多轴伺服驱动器

	采样未完成			
	Axis X 码盘		0031	
	ID 錯逞	ErX01	0001	驱动设置编码器信息错误,可清除
	Avic Y 码舟	ErX02	0032	
	站线进程		0032	编码器连接不可靠,可清除
) 年线相庆 A : V 四舟		0022	
	AX1S X 吗盆	ErX03	0033	编码器通信错误,可清除
	URC 错误		0004	
	Axis X 码盘	ErX04	0034	编码器通信错误,可清除
	超时错误			
	Axis X码盘	ErX05	0035	编码器内部错误,可清除
	错误超速 OS			
	Axis X码盘	ErX06	0036	编码器内部错误。可清除
	错误 FS			
	Axis X码盘	ErX07	0037	伯可思山如佛汜 司法险
	错误计数 CE			<i>"</i> 拥闩奋门 动 钳庆,可 月际
	Axis X码盘	D V00	0038	编码器内部错误,可清除
	错误过热 OH	ErX08		
	Axis X码盘	ErX09	0039	编码器内部错误,可清除
	错误多圈 ME			
	Axis X 码盘	ErX10	003A	编码器内部错误,可清除
	错误电池 BE			
轴X	Axis X 硬件	ErX11	003B	IPM 故障,可清除
$[1^{6}]$	FO			
[]	Axis X A 相	ErX12	003C	
	讨流			A 相过流,可清除
	Avis X B 相		003D	
	云凉	ErX13	0000	B相过流,可清除
	Avia V 油座	ErX14	003E	速度超限,可清除
	和四			
			0025	
	AXIS A <u>世</u> 却学	ErX15	0035	位置超差,可清除
	迎左		0040	
	Axis X 停机	ErX16	0040	停机失败,可清除
	矢败		00.11	
	Axis X 低限	ErX17	0041	触发限位,可清除
	位.			
	Axis X 高限	ErX18	0042	触发限位,可清除
	位			
	Axis X 校零	ErX19	0043	需要重新校零直至成功
	失败			
	Axis X过载	ErX20	0044	过载 200S 错误,可清除
	150%			
	Axis X过载	Γ_{rr} V91	0045	过载 5C 进程 可连险
	300%	LIAZI		2 轵 55 田庆, り

说明:警告不会影响正常运行。

<u> </u>	显示内容	ECAT (201F+N*0x20)	解释
正在刹车	Ar001	0001	系统在刹车,会自动消失
IGBT 温度告警	Ar002	0002	IGBT 温度告警,温度正常后可以自动 清除
ECAT 同步错误	Ar003	0003	ECAT 同步故障,可清除
OF_AX	ArX01	000A	轴 X 码盘多圈计数溢出,需要停机手动清除
BA_AX	ArX02	000B	轴 X 码盘电池低电告警, 需要停机手动清除

附 C 常用终端命令

命令	参数(需要空格)	说明
?	无	查询当前驱动器支持的命令
appinfo	无	查询配置参数及管理信息
appinit	无	初始化配置/管理参数
baozalock	num	num 轴手动抱闸有效
baozarelease	num	num 轴手动抱闸松开
clrerr	num	清除 num 轴错误
clrallerr	无	清除所有错误
clrsm	num	num 轴码盘单圈清零
clrmm	num	num 轴码盘多圈清零
clrlog	无	清除所有日志
clrpowerupcnt	无	清除系统上电次数
disallervo	无	多轴全部关闭
diservo	num	num 轴关闭
enallservo	无	多轴全部使能
enservo	num	num轴使能
getlog	num	查询第 num 条日志
rstenc	num	num 轴码盘复位
reboot	无	软件重启系统
saverom	无	保存参数到 EEPROM 中
stfactory	无	设置下一次上电进入工厂模式
ver	无	查询产品所有版本信息

注: 所有命令仅适用于在控制软件的终端窗口输入。